Emulsion Liquid Membrane for Malachite Green Dye Removal: Emulsion Stability Studies and Environmental Impact
DOI:
https://doi.org/10.32628/IJSRCH251152Keywords:
Malachite Green dye, D2EHPA, Stability, Emulsion liquid membrane, Wastewater TreatmentAbstract
Extraction of malachite green dye from aqueous solutions was investigated under varying experimental conditions using emulsion liquid membranes (ELMs). The study systematically explored the effects of key process variables and emulsion composition parameters on the dye transport efficiency into the ELMs. The membrane phase comprised kerosene as the diluent, with di(2-ethylhexyl) phosphoric acid (D2EHPA) employed as the carrier, SPAN 80 as the surfactant, and an internal phase of 0.5–2.0 M H2SO4 as the stripping agent. Emulsions were characterized for their internal droplet size distribution, viscosity, and interfacial tension with the external feed phase. Optimal removal of malachite green was achieved using an emulsion system containing 1.0 M H2SO4 as the internal phase (Cio), 8% v/v D2EHPA as the carrier (Cc), and 2.5% wt. SPAN 80 as the surfactant (Cs), with the feed phase maintained at pH 4.0. The emulsions were dispersed at 180 rpm with an emulsion-to-feed phase ratio yielding a holdup (h) of 12.8%. In addition to extraction efficiency, the study conducted comprehensive stability assessments, including swelling behavior over time. Stability was found to be strongly influenced by surfactant concentration and internal phase osmotic pressure. The optimized ELM formulation demonstrated minimal swelling and maintained structural integrity over extended operation, ensuring effective dye extraction and reusability potential.
References
Manzak, A., Demirbaş, Ö., Yıldız, Y., & Teker, M. (2024). Adsorption and transport of acid dye through polymer inclusion membrane with Aliquat 336 and TBP. Water Air & Soil Pollution, 235(8). https://doi.org/10.1007/s11270-024-07318-8 DOI: https://doi.org/10.1007/s11270-024-07318-8
Jiang, C., & Sun, X. (2015). Stability of emulsion liquid membrane and membrane phase reaction spectrum study of NH3•H2O system. DOI: https://doi.org/10.1080/19443994.2015.1101019
Jusoh, N., Othman, N., & Nasruddin, N. A. (2016). EMULSION LIQUID MEMBRANE TECHNOLOGY IN ORGANIC ACID PURIFICATION. Malaysian Journal of Analytical Science, 20(2), 436. https://doi.org/10.17576/mjas-2016-2002-28 DOI: https://doi.org/10.17576/mjas-2016-2002-28
Lin, Z., Zhang, Z., Li, Y., & Deng, Y. (2016). Recyclable magnetic-Pickering emulsion liquid membrane for extracting phenol compounds from wastewater. Journal of Materials Science, 51(13), 6370. https://doi.org/10.1007/s10853-016-9933-4
Lin, Z., Zhang, Z., Li, Y., & Deng, Y. (2015). Magnetic nano-Fe3O4 stabilized Pickering emulsion liquid membrane for selective extraction and separation. Chemical Engineering Journal, 288, 305. https://doi.org/10.1016/j.cej.2015.11.109 DOI: https://doi.org/10.1016/j.cej.2015.11.109
Raval, A. R., Kohli, H. P., & Mahadwad, O. K. (2022). Application of emulsion liquid membrane for removal of malachite green dye from aqueous solution: Extraction and stability studies. Chemical Engineering Journal Advances, 12, 100398. https://doi.org/10.1016/j.ceja.2022.100398 DOI: https://doi.org/10.1016/j.ceja.2022.100398
Liang, N., Hou, X., Huang, P., Jiang, C., Chen, L., & Zhao, L. (2017). Ionic liquid-based dispersive liquid-liquid microextraction combined with functionalized magnetic nanoparticle solid-phase extraction for determination of industrial dyes in water. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-14098-1 DOI: https://doi.org/10.1038/s41598-017-14098-1
Ahmad, A. L., Buddin, M. M. H. S., Ooi, B. S., & Kusumastuti, A. (2016). Cadmium removal from aqueous solution by emulsion liquid membrane (ELM): influence of emulsion formulation on cadmium removal and emulsion swelling. Desalination and Water Treatment, 57(58), 28274. https://doi.org/10.1080/19443994.2016.1179674 DOI: https://doi.org/10.1080/19443994.2016.1179674
Chaware, C. Y., Nayak, A. K., & Khobragade, M. U. (2024). Unlocking the Potential of Basalt Quarry Dust for Sustainable Removal of Toxic Malachite Green Dye: Characterization, Adsorption Behaviour and Optimization Analysis Using Soft Computing-Based Modeling. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-5306780/v1 DOI: https://doi.org/10.21203/rs.3.rs-5306780/v1
Chaouchi, S., & Hamdaoui, O. (2015). Removal of 4-nitrophenol from water by emulsion liquid membrane. Desalination and Water Treatment, 57(12), 5253. https://doi.org/10.1080/19443994.2015.1021104
Othman, N., Noah, N. F. M., Poh, K. W., & Yi, O. Z. (2016). High Performance of Chromium Recovery from Aqueous Waste Solution Using Mixture of Palm-oil in Emulsion Liquid Membrane. Procedia Engineering, 148, 765. https://doi.org/10.1016/j.proeng.2016.06.611
Abbassian, K., & Kargari, A. (2016). Modification of membrane formulation for stabilization of emulsion liquid membrane for extraction of phenol from aqueous solutions. Journal of Environmental Chemical Engineering, 4(4), 3926. https://doi.org/10.1016/j.jece.2016.08.030 DOI: https://doi.org/10.1016/j.jece.2016.08.030
Speer, D. (2024). Optimization and Implementation of Continuous Liquid-liquid Extraction and In-situ Separation Processes for Practical Recovery. Deep Blue (University of Michigan). https://doi.org/10.7302/23795
Qureshi, R. F., Bhatti, I., Qureshi, K., & Memon, S. I. (2020). Parametric Study of Rupture Analysis for the Optimization of Stable Emulsion Liquid Membrane using DOE Approach. Mehran University Research Journal of Engineering and Technology, 39(3), 524. https://doi.org/10.22581/muet1982.2003.07 DOI: https://doi.org/10.22581/muet1982.2003.07
Lin, Z., Zhang, Z., Li, Y., & Deng, Y. (2016). Recyclable magnetic-Pickering emulsion liquid membrane for extracting phenol compounds from wastewater. Journal of Materials Science, 51(13), 6370. https://doi.org/10.1007/s10853-016-9933-4 DOI: https://doi.org/10.1007/s10853-016-9933-4
Zhang, F., Sun, Y., Qian, X., Tan, X., Liu, P., Zhong, Y., Zheng, C., & Hu, Y. (2023). Stable and easily detachable cellulose-based membrane system inspired by water hyacinth for efficient heavy metals removal from water. Cellulose, 30(18), 11619. https://doi.org/10.1007/s10570-023-05579-w DOI: https://doi.org/10.1007/s10570-023-05579-w
Jusoh, N., & Othman, N. (2017). Stability of Palm Oil-based Emulsion Liquid Membrane for Succinic Acid Extraction from Aqueous Solution. Journal of Applied Membrane Science & Technology, 19(1). https://doi.org/10.11113/amst.v19i1.19 DOI: https://doi.org/10.11113/amst.v19i1.19
Abbassian, K., & Kargari, A. (2014). Effect of polymer addition to membrane phase to improve the stability of emulsion liquid membrane for phenol pertraction. Desalination and Water Treatment, 57(7), 2942. https://doi.org/10.1080/19443994.2014.983981 DOI: https://doi.org/10.1080/19443994.2014.983981
Bhatti, I., Qureshi, K., Kamarudin, K. S. N., Bazmi, A. A., Bhutto, A. W., Ahmad, F., & Lee, M. (2016). Innovative method to prepare a stable emulsion liquid membrane for high CO2 absorption and its performance evaluation for a natural gas feed in a rotating disk contactor. DOI: https://doi.org/10.1016/j.jngse.2016.07.013
Ahmad, A. L., Harun, M. H. Z. M., Jasni, M. K. A., & Zaulkiflee, N. D. (2021). Removal of Ibuprofen at Low Concentration Using a Newly Formulated Emulsion Liquid Membrane. Membranes, 11(10), 740. https://doi.org/10.3390/membranes11100740 DOI: https://doi.org/10.3390/membranes11100740
Ullah, A. (2021). The influence of interfacial tension on rejection and permeation of the oil droplets through a slit pore membrane. Separation and Purification Technology, 266, 118581. https://doi.org/10.1016/j.seppur.2021.118581 DOI: https://doi.org/10.1016/j.seppur.2021.118581
Khan, H. W.; Reddy, A. V. B.; Negash, B. M.; Moniruzzaman, M.; Aminabhavi, T. M. Recent progress in ionic liquid-based green emulsion liquid membranes for separation of industrial discharges. Chemical Engineering Journal 2024, 496, 154309. https://doi.org/10.1016/j.cej.2024.154309. DOI: https://doi.org/10.1016/j.cej.2024.154309
Hussein, M. A.; Mohammed, A. A.; Atiya, M. A. Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment: an overview. Environmental Science and Pollution Research 2019, 26 (36), 36184–36204. https://doi.org/10.1007/s11356-019-06652-3. DOI: https://doi.org/10.1007/s11356-019-06652-3
Admawi, H. K.; Mohammed, A. A. A comprehensive review of emulsion liquid membrane for toxic contaminants removal: An overview on emulsion stability and extraction efficiency. Journal of Environmental Chemical Engineering 2023, 11 (3), 109936. https://doi.org/10.1016/j.jece.2023.109936. DOI: https://doi.org/10.1016/j.jece.2023.109936
Othman, N.; Noah, N. F. M.; Poh, K. W.; Yi, O. Z. High Performance of Chromium Recovery from Aqueous Waste Solution Using Mixture of Palm-oil in Emulsion Liquid Membrane. Procedia Engineering 2016, 148, 765–773. https://doi.org/10.1016/j.proeng.2016.06.611. DOI: https://doi.org/10.1016/j.proeng.2016.06.611
Dâas, A.; Hamdaoui, O. Extraction of anionic dye from aqueous solutions by emulsion liquid membrane. Journal of Hazardous Materials 2010, 178 (1–3), 973–981. https://doi.org/10.1016/j.jhazmat.2010.02.033. DOI: https://doi.org/10.1016/j.jhazmat.2010.02.033
Arabkhani, P., Javadian, H., Asfaram, A., & Hosseini, S. N. (2021). A reusable mesoporous adsorbent for efficient treatment of hazardous triphenylmethane dye wastewater: RSM-CCD optimization and rapid microwave-assisted regeneration. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-02213-2 DOI: https://doi.org/10.1038/s41598-021-02213-2
Morshedaski, N., Raji, F., & Rahbar‐Kelishami, A. (2023). Optimization of Y and T-shaped microchannels for liquid–liquid extraction. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-46333-3 DOI: https://doi.org/10.1038/s41598-023-46333-3
Laki, S., & Kargari, A. (2016). Extraction of Silver Ions from Aqueous Solutions by Emulsion Liquid Membrane. Journal of Membrane Science and Research, 2(1), 33. https://doi.org/10.22079/jmsr.2016.15876
Lapo, B., Pavón, S., Hoyo, J., Fortuny, A., Scapan, P., Bertau, M., & Sastre, A. M. (2023). Bioderived Pickering Emulsion Based on Chitosan/Trialkyl Phosphine Oxides Applied to Selective Recovery of Rare Earth Elements. ACS Applied Materials & Interfaces, 15(51), 59731. https://doi.org/10.1021/acsami.3c10233 DOI: https://doi.org/10.1021/acsami.3c10233
Chaouchi, S., & Hamdaoui, O. (2015). Removal of 4-nitrophenol from water by emulsion liquid membrane. Desalination and Water Treatment, 57(12), 5253. https://doi.org/10.1080/19443994.2015.1021104 DOI: https://doi.org/10.1080/19443994.2015.1021104
